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Abstract

We use WZ summation methods to compute recurrences for the Ising-class
integrals Cn,k. In this context, we describe an algorithmic approach to obtain
homogeneous and inhomogeneous recurrences for a general class of multiple
contour integrals of Barnes’ type.

1 Introduction

We give an affirmative answer to one of the problems stated in Section 7 of [3]
regarding recurrences in k ≥ 1 for the members of the Ising-class integrals

Cn,k :=
1
n!

∫ ∞
0

. . .

∫ ∞
0

dx1dx2 . . . dxn

(coshx1 + · · ·+ coshxn)k+1
. (1)

In [3], after transforming the member C5,k of the Ising-class integrals to a two-fold
nested Barnes integral, it was asked whether, using this new transformed form of the
integral, an already conjectured recurrence could be proven by means of computer
algebra algorithms based on WZ summation methods. As described in [3], this idea
goes back to W. Zudilin.

Using Wegschaider’s algorithm [10], which is an extension of multivariate WZ
summation [12], we have obtained the conjectured recurrences in k ≥ 1 for the
integrals C5,k and C6,k. Moreover, we will show that, in principle, one can obtain
recurrences with respect to k ≥ 1 for any integral of the form (1) with n ∈ N,
using the multivariate summation algorithm [10] after applying the above mentioned
transformation method to the integral.
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In [4], J. M. Borwein and B. Salvy show the existence of linear recurrences with
polynomial coefficients for the integrals (1) using the theory of D-finite series and a
Bessel-kernel representation given in [2]. Also a very efficient algorithm to compute
recurrences in k ≥ 1 for the integrals Cn,k for given n ∈ N is described in [4]. Our
approach to obtain these recurrences is different; in particular, it gives a general
algorithmic method to compute homogeneous and inhomogeneous recurrences for
multiple nested Barnes’ type integrals.

2 The Problem

For the statement of the problem we invoke the renormalization

cn,k :=
n!
2n

Γ (k + 1)Cn,k

used in [3]. The idea of W. Zudilin presented in Section 7 of [3] relies on the following
analytic convolution theorem.

Theorem 1 ([3], Theorem 7) For k ∈ C with Re(k) > 0 and n, q ∈ N such that
n ≥ 1 and 1 ≤ q ≤ n− 1, we have

cn,k =
1

2πi

∫
C
cn−q,k+scq,−1−sds

where the contour C runs over the vertical line (−λ− i∞,−λ+ i∞) with λ ∈ R
such that −1−Re(k) < −λ < −1.

Also in [3] the closed forms

C1,k =
2kΓ

(
k+1
2

)2
Γ (k + 1)

(2)

and

C2,k =
√
πΓ
(
k+1
2

)3
2Γ
(
k
2 + 1

)
Γ (k + 1)

(3)

were computed. In the following sections, we will compute the homogeneous recur-
rences satisfied by C3,k and C6,k for k ≥ 1. By applying Theorem 1, using the closed
forms (2) and (3), and making substitutions (s, t)→ (2s, 2t), we are able to rewrite
these as the Barnes’ type integrals

C3,k =
1

12i
√
πΓ(k + 1)

∫
Cs

Γ
(
k+1
2 + s

)3
Γ(−s)2

Γ
(
k
2 + s+ 1

)
4s

ds (4)
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and, respectively,

C6,k =
−1

720
√
πΓ (k + 1)

∫
Cs

∫
Ct

Γ
(
k+1
2 + s

)3
Γ (t− s)3 Γ (−t)3

Γ
(
k
2 + s+ 1

)
Γ
(
t− s+ 1

2

)
Γ
(
−t+ 1

2

)dsdt. (5)

The vertical contours Cs := (−λ− i∞,−λ+ i∞) separate the poles of Γ
(
k+1
2 + s

)
from the poles of Γ (−s) and, respectively, from those of Γ (t− s). Similarly, Ct :=
(−ρ− i∞,−ρ+ i∞) splits the descending set of poles coming from Γ (t− s) from
the ascending poles of Γ (−t). For reasons that become clear in Section 5, we choose
λ, ρ ∈ R such that the following conditions are satisfied:

−1 +Re(k)
2

< −λ < −ρ < −1. (6)

Successively applying Theorem 1, we prove the following integral representation:

Proposition 1 For arbitrary integers n, k ≥ 1, we have

Cn,k =
2n

n! (2πi)q
1

Γ (k + 1)

∫
Ct1

. . .

∫
Ctq

c2,k+t1

q−1∏
j=1

c2,−1−tj+tj+1

 cε,−1−tqdt1 . . . dtq,

(7)
where q :=

⌈
n
2

⌉
− 1 and ε := n− 2q.

We use the closed forms (2) and (3), and the substitutions tj → 2tj for all
1 ≤ j ≤ q, to obtain from (7) the final representation of Cn,k for arbitrary k, n ≥ 1.
At last, we choose new integration contours Ctj := (−λj − i∞,−λj + i∞) for all
1 ≤ j ≤ q which run over vertical lines separating the poles of gamma functions of
the form Γ (a+ tj) from the poles of gamma functions of the form Γ (b− tj). For
reasons presented later, we choose these Barnes paths of integration such that the
following conditions are satisfied:

−1 +Re(k)
2

< −λ1 < −λ2 < · · · < −λq < −1. (8)

3 Deriving Recurrences Algorithmically

Wegschaider’s algorithm [10] is an extension of multivariate WZ summation [12],
and in this context it is used to compute recurrences for sums of the form

Sum (µ) =
∑
κ1∈R1

· · ·
∑
κr∈Rr

F (µ, κ1, . . . , κr) . (9)
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Under some mild side conditions described in [10], it can be applied if the sum-
mands F (µ, κ) are hypergeometric in all integer variables µi from µ = (µ1, . . . , µp)
and in all summation variables κj from κ = (κ1, . . . , κr) ∈ R where R := R1× · · · ×
Rr ⊆ Zr is the summation range.

Remark: Recall that an expression F (µ, κ) is called hypergeometric [13, 12] if
there exists a rational function rm,k(µ, κ) such that F(µ,κ)

F(µ+m,κ+k) = rm,k(µ, κ) at the
points m ∈ Zp and k ∈ Zr where this ratio is defined.

As described in [12], WZ-summation is based on Sister Celine’s method [7] of
finding a κ-free recurrence for the hypergeometric summand F (µ, κ)∑

(u,v)∈S

cu,v (µ)F(µ+ u, κ+ v) = 0 (10)

where the set of shifts S ⊂ Zp+r is called the structure set of the recurrence.
Denoting by M = (M1, . . . ,Mp) and K = (K1, . . . ,Kr) the forward-shift oper-

ators with respect to the variables from µ and respectively from κ and using the
multi-index notation, the left hand side of (10) can be viewed as applying to F the
operator

P (µ,M,K) :=
∑

(u,v)∈S

cu,v (µ)MuKv.

The next step consists of successively dividing the polynomial recurrence operator
P by all forward-shift difference operators

∆κjF(µ, κ) := (Ki − 1)F(µ, κ) = F (µ, κ1, . . . , κj + 1, . . . , κr)−F (µ, κ)

to obtain an operator free of shifts in the summation variables κj from κ = (κ1, . . . , κr),
called the principal part of the recurrence (10).

Wegschaider’s algorithm [10] generalizes and optimizes this approach in several
directions, but thinking on these simple lines, given a structure set S together with
the hypergeometric summand F (µ, κ), it computes a certificate recurrence of the
form

∑
m∈S′

am (µ)F(µ+m,κ) =
r∑
j=1

∆κj

 ∑
(m,k)∈Sj

bm,k (µ, κ)F(µ+m,κ+ k)

 , (11)

where the polynomials am (µ), not all zero, and bm,k (µ, κ), as well as the sets of
shifts Sj ⊂ Zp+r and S′ ⊂ Zp are determined algorithmically.

Note that the left side of (11) constitutes the principal part of (10). Moreover,
since the right side contains the quotients of the successive divisions by the delta op-
erators, each expression inside a delta-part ∆κj will be free of shifts in the summation
variables κi with 1 ≤ i < j.
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Note also that Wegschaider’s algorithm [10] finds a certificate recurrence for the
hypergeometric term F (µ, κ), if such a recurrence exists. To be more precise, the
algorithm [10] terminates successfully, for a large enough structure set, if we restrict
our input class to proper hypergeometric summands; see [12] for the definition of
proper hypergeometric terms and also regarding the existence conditions for certifi-
cate recurrences.

Remark: The right hand side of (11) can always be rewritten as

r∑
j=1

∆κj

 ∑
(m,k)∈Sj

bm,k (µ, κ)F(µ+m,κ+ k)

 =
r∑
j=1

∆κj (rj (µ, κ)F(µ, κ)) , (12)

where rj are rational functions of all variables from µ = (µ1, . . . , µp) and κ =
(κ1, . . . , κr).

Remark: In the certificate recurrence (11), the coefficients am (µ) are polynomials
free of the summation variables κj from κ, while the coefficients bm,k (µ, κ) of the
delta-parts are polynomials in all the variables from µ and κ.

Finally, the recurrence for the multisum (9) is obtained by summing the certificate
recurrence (11) over all variables from κ in the given summation rangeR. Since it can
be easily checked whether the summand F(µ, κ) indeed satisfies the recurrence (11),
the certificate recurrence also provides a proof of the recurrence for the multisum
Sum (µ).

Two further remarks are in place. Since in non-elementary applications finding a
κ-free recurrence can be a time and space consuming problem, Wegschaider’s algo-
rithm [10] is used after making an Ansatz about the structure set S of this recurrence.
A procedure based on modular computation to obtain a candidate structure set was
already used in [5] and it is implemented in the Mathematica package MultiSum1.
This package which includes an implementation of Wegschaider’s algorithm [10] can
be loaded within a Mathematica session by
In[1]:= << MultiSum.m

MultiSum Package by Kurt Wegschaider (enhanced by Axel Riese and Burkhard
Zimmermann) – c© RISC Linz – V2.02β (02/21/05)

Secondly, we remark that in many applications the function F(µ, κ) has a finite
support. In these cases, if we sum the recurrence (11) over a domain that is larger
then the support of the function, the ∆-parts on the right hand side telescope and
the values that are not in the support vanish. So, from the summand recurrence one
obtains a homogeneous recurrence for the sum∑

m∈S
am (µ)Sum (µ+m) = 0. (13)

1available at http://www.risc.uni-linz.ac.at/research/combinat/software/
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This is not the case in general; i.e., in specific situations human inspection is still
needed to pass from the recurrence (11) to a homogeneous or inhomogeneous recur-
rence for the sum (9). More information on this subject can be found in [12].

4 From Summation to Integration

In this section we will show how Wegschaider’s algorithm [10] can be used to deter-
mine recurrences for multiple contour integrals of Barnes’ type

Int (µ) =
∫
Cκ1

. . .

∫
Cκr
F (µ, κ1, . . . , κr) dκ1 . . . dκr, (14)

where the integrands F (µ, κ) are proper hypergeometric in all integer variables µi
from µ = (µ1, . . . , µp) and in all integration variables κj from κ = (κ1, . . . , κr) ∈ Cr.

For instance, the integral representations obtained in Section 2 for Cn,k for any
n, k ≥ 1 are of the considered form (14) if we distinguish between the even and odd
values of k ∈ N.

As in the case of the summation problem (9), the fundamental theorem of hy-
pergeometric summation stated by Wilf and Zeilberger in [12] proves the existence
of non-trivial certificate recurrences of the form (11) for the function F (µ, κ). Using
WZ summation methods, Wegschaider’s algorithm [10] delivers recurrences of the
form (11) for the hypergeometric integrand from (14). As remarked in Section 3, the
coefficients on the left hand side of this recurrence are free of all integration variables
κ = (κ1, . . . , κr).

Moreover, although discrete functions are our main interest, one can evaluate the
function F (µ, κ) also for complex values of the variables µi and κj for all 1 ≤ i ≤ p
and 1 ≤ j ≤ r except at certain points. In our case, the singularities of the numerator
gamma functions need to be excluded from the evaluation domain. The function
F (µ, κ) is then continuous on its evaluation domain and by taking limits it can be
shown that the computed recurrences (11) hold in Cp+r.

Therefore, after successively integrating over the Barnes paths of integration Cκj
for 1 ≤ j ≤ r, (11) leads, in some cases, to a homogeneous recurrence for the
integration problem (14), i.e.,∑

m∈S
am (µ) Int (µ+m) = 0. (15)

However, again in analogy to the summation case, after integrating over the
contours of integration Cκj for 1 ≤ j ≤ r, it is not clear, in general, that we obtain
a homogeneous equation of the type (15). Consequently, one needs to analyze the
behavior of the contour integrals over the left hand side of (11).
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For this purpose, we study the following integration problems:

Ij :=
∫
Cκj

∆κjF (µ, κ) dκj =
∫
C′κj

F (µ, κ) dκj −
∫
Cκj
F (µ, κ) dκj , (16)

where the Barnes path Cκj runs vertically over (cj − i∞, cj + i∞) while C′κj denotes
the shifted path (1 + cj − i∞, 1 + cj + i∞) for all 1 ≤ j ≤ r.

For any 1 ≤ j ≤ r, consider now the contour integral INj over a rectangle with
vertices at the points cj − iN , cj + iN , 1 + cj + iN and 1 + cj − iN with N ∈ N; i.e.,

INj =

1+cj+iN∫
1+cj−iN

F (µ, κ) dκj +

cj+iN∫
1+cj+iN

F (µ, κ) dκj

+

cj−iN∫
cj+iN

F (µ, κ) dκj +

1+cj−iN∫
cj−iN

F (µ, κ) dκj . (17)

If in any such rectangular region of integration, we have the asymptotic behavior

F (µ, κ) = O
(
e−c|κj |

)
as |κj | → ∞ with c > 0, (18)

then INj → Ij as N →∞. Since the function F (µ, κ) is dominated by an exponential
with negative exponent, it suffices to analyze the integrals (16) instead of the integrals
over the right hand side of (12).

On the other hand, we can calculate the integrals (17) by considering the residues
of the function F (µ, κ) at the poles lying inside the closed rectangular contours.
Therefore, if for all 1 ≤ j ≤ r, the Barnes paths of integration Cκj can be chosen
such that the function F (µ, κ) has no poles inside these rectangular regions, then
the integrals (16) will be zero. This is why conditions (8) are imposed on the integral
representation of Cn,k for n, k ≥ 1.

Under these restrictions, we obtain from the certificate recurrence (11) a homo-
geneous recurrence (15) for the multiple Barnes’ type integral (14). Note that, by a
different choice of the integration contours, this method will lead to inhomogeneous
recurrences for multiple Barnes integrals which satisfy the asymptotic condition (18).

5 Recurrences for the Integrals Cn,k

After distinguishing between odd and even values of the parameter k, for an arbitrary
Ising-class integral Cn,k, n, k ≥ 1, one obtains two representations of the form

Cn,µ =
2n+2q

n! (2πi)q
1

Γ (µ+ 1)

∫
Ct1

. . .

∫
Ctq

Ψ (µ, t1, . . . , tq) dt1 . . . dtq, (19)
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where µ = k
2 , respectively, µ = k−1

2 such that µ ∈ N. In both cases the integrand
Ψ (µ, t) is proper hypergeometric in µ ≥ 0 and in all integration variables tj from
t = (t1, . . . , tq).

Therefore, Wegschaider’s algorithm [10] can be applied to deliver a certificate
recurrence of the form (11), that can always be rewritten as

∑
m∈S

am (µ) Ψ(µ+m, t) =
r∑
j=1

∆tj

 ∑
(m,τ)∈Sj

bm,τ (µ, t) Ψ(µ+m, t + τ)

 , (20)

where S is a pre-computed structure set, where bm,τ (µ, t) and the coefficients am (µ)
are polynomials, the latter free of the integration variables and not all zero. Next we
discuss when the recurrence relation, obtained after integrating over the certificate
(20), is homogeneous.

Proposition 2 If the integration contours Ctj := (−λj − i∞,−λj + i∞) satisfy the
conditions (8) and the sets of shifts Sj are of the form

Sj =
{

(m, τ) ∈ Zq+1 : m ≥ 0, τj < τj+1 and τi = 0 for 1 ≤ i < j
}
,

for 1 ≤ j < q and

Sq =
{

(m, τ) ∈ Zq+1 : m ≥ 0 and τi = 0 for 1 ≤ i ≤ q
}
,

then we have ∫
Ctj

∆tj

 ∑
(m,τ)∈Sj

bm,τ (µ, t) Ψ(µ+m, t + τ)

 dtj = 0, (21)

for all 1 ≤ j ≤ q and µ ≥ 1.

Proof: Given the iterative construction of the integral representation (7), com-
puted in Section 2, it suffices to study the behavior of the following two integrals

I1 :=
∫
C1

∆t

(
Γ (t− r)3

Γ
(
t− r + 1

2

) Γ (−t)2

4t

)
dt, (22)

I2 :=
∫
C2

∆t

(
Γ (t− r)3

Γ
(
t− r + 1

2

) Γ (s+ 1− t)3

Γ
(
s− t+ 3

2

) ) dt, (23)

where r, s ∈ C are given constants.
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We will prove here that both integrals

Il =
∫
Cl

∆t (Fl(t)) dt, l ∈ {1, 2}

are zero if the contours of integration Cl are the vertical lines (−ρl − i∞,−ρl + i∞)
separating the increasing from the decreasing sequences of poles of the gamma func-
tions appearing in the numerators of the integrands Fl(t). The Barnes paths of
integration Cl also fulfill the conditions (8); i.e., Re(r) < −ρl < Re(s) < −1 for
l ∈ {1, 2}.

Using the transformation t+ 1→ t we can write the integrals (22) and (23) as

Il =
∫
C′l
Fl (t) dt−

∫
Cl
Fl (t) dt, l ∈ {1, 2}

where the shifted contours C′l run vertically on the line (1− ρl − i∞, 1− ρl + i∞).
Next we define integrals of the form (17),

INl :=

1−ρl+iN∫
1−ρl−iN

Fl (t) dt+

−ρl+iN∫
1−ρl+iN

Fl (t) dt+

−ρl−iN∫
−ρl+iN

Fl (t) dt+

1−ρl−iN∫
−ρl−iN

Fl (t) dt,

for N > 0 an arbitrary integer and l ∈ {1, 2}.
Since conditions (8) are fulfilled, there are no poles of the functions Fl (t) within

these closed rectangular contours of integration. Therefore INl are zero for any
integer N ∈ N. It only remains to show that INl → Il as N →∞ for l ∈ {1, 2}. For
this we need to prove that the integrals

JNl :=

−ρl+iN∫
1−ρl+iN

Fl (t) dt and LNl :=

1−ρl−iN∫
−ρl−iN

Fl (t) dt

tend to zero as N →∞.
The following asymptotic representation of the function log Γ(z) for large |z| in

the region where |arg(z)| ≤ π − δ and |arg(z + a)| ≤ π − δ with δ > 0,

log Γ(z + a) = (z + a− 1
2

) log z − z +O(1) (24)

can be found in ([11], 13.6). Using (24) one obtains when |t| → ∞ and |arg(t)| < π,

Fl (t) = O
(
eIm(t)[arg(−t)−arg(t)]

)
, l ∈ {1, 2} .
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Here we distinguish two cases, either Im(t) > 0 or Im(t) < 0, and in any of these
cases the functions Fl (t) fulfill the condition (18) which assures that the integrals
JNl and LNl tend to zero as N →∞ for l ∈ {1, 2}.

Remark: The conditions of our proposition are very restrictive; especially the
condition imposed on the set of shifts appearing inside the last delta part ∆tq rarely
occurs in practice. For example, for the integral C3,k in the case k = 2K we use
the integral form (4) and the following commands, from the package MultiSum, to
compute a certificate recurrence and shift it accordingly

In[2]:= F [k , s ] :=
Γ

ˆ
k+1
2

+ s
˜3

Γ[−s]2

12i
√
πΓ[k + 1]Γ

ˆ
k
2

+ s+ 1
˜
4s

;

In[3]:= FindRecurrence [F [2K, s],K, s, 1] ;

In[4]:= rec = ShiftRecurrence [%[[1]], {K, 2}, {s, 2}]

Out[4]= −(2K +1)3F [K, s]+4(K +1)(20K2 +40K +21)F [K +1, s]−36(K +1)(K +2)(2K +3)F [K +

2, s] = ∆s[(2K +1)3F [K, s]+(2K +1)3F [K, s+1]−4(K +1)(20K2 +40K +21)F [K +1, s]−
16(K + 1)(2K2 − 4sK −K − 5s− 4)F [K + 1, s + 1] + 48(K + 1)(K + 2)(2K + 3)F [K + 2, s]].

After integrating both sides of this certificate recurrence with respect to the variable
s, we can apply Proposition 2 only to some of the terms appearing inside the delta
part. At last, on the remaning terms, Cauchy’s residue theorem and the asymptotic
property (18) will be used to evaluate the left-over contour integrals occuring on the
right hand side of the recurrence. In this way, after computing the following two
Mellin-Barnes integrals∫

Cs
∆s[(2K + 1)3F [K, s+ 1]− 16(K + 1)(2K2 − 4sK −K − 5s− 4)

F [K + 1, s+ 1]]ds = (2K + 1)32πi Res
s=−1

F [K, s+ 1]−

16(K + 1)(2K2 + 3K + 1)2πi Res
s=−1

F [K + 1, s+ 1],

the final recurrence satisfied by C3,2K turns out to be homogeneous. In more general
situations, the necessary residue computations tend to be involved but packages
such as Sigma [8] and HarmonicSums [1] can algorithmically simplify the resulting
expressions.
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6 The Recurrence for the Integral C6,k

In [3], the following recurrence for the integral C6,k was conjectured

− (k + 1)6C6,k + 8(k + 2)2(7k4 + 56k3 + 182k2 + 280k + 171)

C6,k+2 − 16(k + 2)(k + 3)2(k + 4)(49k2 + 294k + 500)C6,k+4

+ 2304(k + 2)(k + 3)(k + 4)2(k + 5)(k + 6)C6,k+6 = 0 (25)

To prove that the integral (1) for n = 6 satisfies the above recurrence, we use
the representation (5). First, we input in Mathematica its integrand as a function
of k ≥ 0 and complex variables s and t

In[5]:= F [k , s , t ] :=
−

`
Γ

ˆ
k+1
2

+ s
˜
Γ[t− s]Γ[−t]

´3

720
√
πΓ[k + 1]Γ

ˆ
k
2

+ s+ 1
˜
Γ

ˆ
t− s+ 1

2

˜
Γ

ˆ
−t+ 1

2

˜ .
In the first part of the proof we want to apply Wegschaider’s algorithm [10] which

was already introduced in Section 3, to obtain a certificate recurrence for F [k, s, t].
For this we need the function to be proper hypergeometric not only with respect to
the integration variables s, t but also with respect to the additional parameter k.
This leads to a case distinction between even and odd values of k. In each of the
two cases, we introduce a new variable K ≥ 0 such that the setting of (14) applies.
In this way, C6,k can be expressed as a double Barnes type integral over a proper
hypergeometric term

C6,2K+ε =
−1

720π

∫
Cs

∫
Ct
F(K, s, t)dsdt,

with K ≥ 0, ε ∈ {0, 1} and integration contours satisfying the condition (6).
As already pointed out, one can reduce the running time of the summation algo-

rithm [10] by first making an Ansatz for a small structure set of the recurrence. For
example, before computing a recurrence relation for F [2K, s, t], we find a structure
set with the command
In[6]:= FindStructureSet [F [2K, s, t],K, {s, t} , {2, 2} , 1]

which gives us two candidates. Using the first candidate we already succeed in finding
a certificate recurrence which can be shifted accordingly to obtain a relation of the
form (20), i.e.,
In[7]:= FindRecurrence [F [2K, s, t],K, {s, t} ,%[[1]], 1,WZ→ True] ;

In[8]:= rec = ShiftRecurrence [%[[1]], {K, 3} , {s, 2} , {t, 1}] .

The sets of shifts appearing inside the delta parts, ∆s and ∆t can be inspected by
using the simple Mathematica commands
In[9]:= Cases [rec[[2, 1]], F [ ], Infinity]
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Out[9]= {F [K, s, 1+ t], F [K, 1+s, 1+ t], F [K, 2+s, 1+ t], F [1+K, s, t], F [1+K, s, 1+ t], F [1+K, 1+

s, t], F [1 + K, 1 + s, 1 + t], F [1 + K, 2 + s, 1 + t], F [2 + K, s, t], F [2 + K, s, 1 + t], F [2 + K, 1 +

s, t], F [2 + K, 1 + s, 1 + t], F [2 + K, 2 + s, 1 + t], F [3 + K, s, t], F [3 + K, s, 1 + t], F [3 + K, 1 +

s, t], F [3 + K, 1 + s, 1 + t]}

and
In[10]:= Cases [rec[[2, 2]], F [ ], Infinity]

Out[10]= {F [K, s, t], F [1 + K, s, t], F [2 + K, s, t], F [3 + K, s, t]}.

When integrating with respect to the variables s and t over this certificate recur-
rence, the conditions of Proposition 2 are fullfilled by the set of shifts appearing in
the ∆t-part and by a subset of the set shifts contained in ∆s. At last, we evaluate the
remaining contour integrals and again we obtain a homogeneous recurrence satisfied
by INT[K] := C6,2K . This is returned by the command
In[11]:= SumCertificate [rec] /.SUM→ INT

Out[11]= (1+2K)6INT[K]−32(1+K)2(171+560K +728K2 +448K3 +112K4)INT[1+K]+256(1+

K)(2 + K)(3 + 2K)2(125 + 147K + 49K2)INT[2 + K] − 36864(1 + K)(2 + K)2(3 + K)(3 +

2K)(5 + 2K)INT[3 + K] = 0.

Similarly, in the case k = 2K + 1 and K ≥ 0 the computed recurrence is

Out[11]= (1+K)6INT[K]−(3+2K)2(87+210K+196K2+84K3+14K4)INT[1+K]+(2+K)2(3+2K)(5+

2K)(843+784K+196K2)INT[2+K]−144(2+K)(3+K)(3+2K)(5+2K)2(7+2K)INT[3+K] =

0,

where INT[K] now denotes C6,2K+1.
The last step of the proof consists in obtaining the recurrence for the sequence of

integrals C6,k with k ≥ 0. To this end, we utilize the fact that the sequences C6,2K

and C6,2K+1 defined for all K ≥ 0 are P-recursive (also called holonomic [9, 14]); i.e.,
they satisfy linear recurrences with polynomial coefficients. To compute the desired
recurrence, we load, for instance, the Mathematica package
In[12]:= << GeneratingFunctions.m

GeneratingFunctions Package by Christian Mallinger – c© RISC Linz – V 0.68
(07/17/03)

From this package, the command REInterlace computes a recurrence that is satis-
fied by the sequence obtained by interlacing the input recurrences (see [6] for more
details). This means, we input the recurrence relations satisfied by (C6,2K)K≥0 and
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(C6,2K+1)K≥0, respectively, and obtain a polynomial recurrence for the sequence
C6,k with k ≥ 0. The computed recurrence is exactly (25) and herewith the proof is
complete.

7 Conclusion

This algorithmic method to prove and compute recurrences for members of the Ising-
class integrals using Wegschaider’s algorithm [10] delivers the recurrence conjectured
in [3] for C5,k in completely analogous manner. Neglecting practical issues like com-
putation time, this method applies to all n ≥ 1.

Though, we need to remark that the algorithm [10] determines recurrences, after
making an Ansatz about their structure set (i.e., fixing the set of shifts that they
contain), by solving a large system of equations over a field of rational functions.
Therefore, if the input of the algorithm is too involved, computations might become
time consuming.

Basic ingredients of the approach are the representation of the Ising integrals Cn,k
for k, n ≥ 1 as nested Barnes’ type integrals and the convolution theorem stated in
Section 7 of [3], ideas going back W. Zudilin.

In addition, the method briefly explained in Section 4 of this paper is more
general and has a wider range of applications that deserve to be explored further.
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